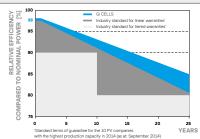

THE IDEAL SOLUTION FOR:

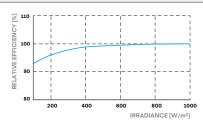
Rooftop arrays on residential buildings



ELECTRICAL CHARACTERISTICS

PO	WER CLASS			320	325	330	335
MIN	NIMUM PERFORMANCE AT STANDAI	RD TEST CONDITIO	NS, STC1 (POV	VER TOLERANCE +5 W /	-0W)		
— wnu	Power at MPP¹	P _{MPP}	[W]	320	325	330	335
	Short Circuit Current ¹	I _{sc}	[A]	10.04	10.10	10.15	10.21
	Open Circuit Voltage ¹	V _{oc}	[V]	40.10	40.36	40.62	40.89
Minir	Current at MPP	I _{MPP}	[A]	9.56	9.61	9.67	9.72
2	Voltage at MPP	V _{MPP}	[V]	33.47	33.81	34.14	34.47
	Efficiency ¹	η	[%]	≥19.0	≥19.3	≥19.6	≥19.9
MIN	NIMUM PERFORMANCE AT NORMAL	OPERATING CONI	DITIONS, NMO	T ²			
	Power at MPP	P _{MPP}	[W]	239.2	242.9	246.6	250.4
E	Short Circuit Current	I _{sc}	[A]	8.09	8.14	8.18	8.22
Minimu	Open Circuit Voltage	V _{oc}	[V]	37.81	38.06	38.31	38.55
	Current at MPP	I _{MPP}	[A]	7.52	7.57	7.61	7.65
	Voltage at MPP	V _{MPP}	[V]	31.79	32.11	32.42	32.73

 $^1\text{Measurement tolerances P}_{\text{MFP}} \pm 3\%; I_{\text{SC}}; V_{\text{OC}} \pm 5\% \text{ at STC}; 1000 \text{ W/m}^2, 25 \pm 2\text{ °C}, \text{AM } 1.5 \text{ according to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ Acc$


Q CELLS PERFORMANCE WARRANTY

At least 98% of nominal power during first year. Thereafter max. 0.54% degradation per year. At least 93.1% of nominal power up to 10 years. At least 85% of nominal power up to 25 years.

All data within measurement tolerances. Full warranties in accordance with the warranty terms of the Q CELLS sales organisation of your respective country.

PERFORMANCE AT LOW IRRADIANCE

Typical module performance under low irradiance conditions in comparison to STC conditions (25 °C, 1000 W/m²).

TEMPERATURE COEFFICIENTS								
Temperature Coefficient of I _{SC}	α	[%/K]	+0.04	Temperature Coefficient of V _{oc}	β	[%/K]	-0.27	
Temperature Coefficient of P _{MPP}	γ	[%/K]	-0.36	Nominal Module Operating Temperature	NMOT	[°C]	43±3	

PROPERTIES FOR SYSTEM DESIGN

Maximum System Voltage	$V_{\scriptsize SYS}$	[V]	1000	PV module classification	Class II
Maximum Reverse Current	I_R	[A]	20	Fire Rating based on ANSI/UL 61730	C/TYPE 2
Max. Design Load, Push / Pull		[Pa]	3600/2667	·	-40°C - +85°C
Max. Test Load, Push / Pull		[Pa]	5400/4000	on Continuous Duty	

QUALIFICATIONS AND CERTIFICATES

PACKAGING INFORMATION

VDE Quality Tested. IEC 61215:2016; IEC 61730:2016. This data sheet complies with DIN EN 50380.

packaging

639 kg

26 pallets 32 modules

Note: Installation instructions must be followed. See the installation and operating manual or contact our technical service department for further information on approved installation and use of this product.

Made in China

Hanwha Q CELLS Australia Pty Ltd

Suite 1, Level 1, 15 Blue Street, North Sydney, NSW 2060, Australia | TEL +61 (0)2 9016 3033 | FAX +61 (0)2 9016 3032 | EMAIL q-cells-australia@q-cells.com | WEB www.q-cells.com/au

